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Abstract—In this paper, we develop a centralized spectrum
sensing and Dynamic Spectrum Access (DSA) scheme for sec-
ondary users (SUs) in a Cognitive Radio (CR) network. Assum-
ing that the primary channel occupancy follows a Markovian
evolution, the channel sensing problem is modeled as a Partially
Observable Markov Decision Process (POMDP). We assume that
each SU can sense only one channel at a time by using energy
detection, and the sensing outcomes are then reported to a central
unit, called the secondary system decision center (SSDC), that
determines the channel sensing/accessing policies. We derive both
the optimal channel assignment policy for secondary users to
sense the primary channels, and the optimal channel access rule.
Our proposed optimal sensing and accessing policies alleviate
many shortcomings and limitations of existing proposals: (a)
ours allows fully utilizing all available primary spectrum white
spaces, (b) our model, and thus the proposed solution, exploits the
temporal and spatial diversity across different primary channels,
and (c) is based on realistic local sensing decisions rather
than complete knowledge of primary signalling structure. As an
alternative to the high complexity of the optimal channel sensing
policy, a suboptimal sensing policy is obtained by using the
Hungarian algorithm iteratively, which reduces the complexity
of the channel assignment from an exponential to a polynomial
order. We also propose a heuristic algorithm that reduces the
complexity of the sensing policy further to a linear order. The
simulation results show that the proposed algorithms achieve
a near-optimal performance with a significant reduction in
computational time.

Index Terms—Cognitive radio, dynamic spectrum access
(DSA), partially observable Markov decision processes (POMDP),
Hungarian algorithm.

I. INTRODUCTION

OPPORTUNISTIC Spectrum Access (OSA) is emerging
as one of the Dynamic Spectrum Access (DSA) tech-

niques that can mitigate the underutilization of the spectrum
bands. Such DSA techniques can be implemented by using
Cognitive Radio (CR) devices which are supposed to be
equipped with the ability to learn and adapt to their RF
environment. A set of cognitive radios may form a secondary
network that coexists with the primary licensed users and
shares the spectrum opportunistically. This is referred to as
the spectrum interweave which permits the secondary users
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to communicate by using the spectrum holes in the primary
bands [1].

In order to achieve successful spectrum coexistence, how-
ever, the cognitive users should be able to correctly identify
the spectrum holes and to transmit without interfering with
the primary users (PUs). Of course, this may not be always
possible: The secondary users can make wrong decisions about
the occupancy of the spectrum holes due to receiver noise
and fading in the wireless channels. Sophisticated detectors,
such as the matched filter and the cyclostationary detector,
may be employed by cognitive users for obtaining a better
estimate of the primary channels’ status, as we describe in
the accompanying paper. However, this would require some
information about the primary signal leading to additional
complexity at the cognitive devices. On the other hand, SUs
are usually intended to operate in different RF environments,
therefore, they are aimed to detect any existing primary signal,
irrespective of its characteristics. In this case, the cognitive
users do not assume any knowledge about the primary signal
and they may employ energy detection as an optimal tech-
nique to perform the spectrum sensing, as we describe next
throughout this paper.

A secondary user can obtain a better estimate about the
primary channels occupancy by basing its decisions not only
on the current but also on the the past observations of the chan-
nels, if the primary traffic exhibits some temporal correlation.
In particular, if a channel is characterized at each instant to
be either idle (state 0) or busy (state 1), the state transitions
may be modeled as a Markov chain, and the optimal sensing
policy can be obtained by modeling the system as a Partially
Observable Marov Decision Process (POMDP). This method
has been studied in the past [2], [3], but the optimal solution
to the POMDP is shown to be computationally prohibitive
because of the continuum of the state space. In this case, it is
more convenient to maximize a reward function at each time
instant, instead of maximizing the total discounted return, thus
obtaining a myopic policy for the POMDP problem.

In this paper, unlike [2], we assume a centralized CR
network with a Secondary System Decision Center (SSDC)
that receives, at every instant, the sensing outcomes of all
the SUs and determines the sensing and accessing policies of
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SUs accordingly. The observations of the SUs are assumed to
be affected by independent channel fading coefficients, which
makes our proposed model more realistic than the model in [3]
since we take into account the spatial and temporal variations
of the wireless channels. Also, we do not restrict all the SUs
to sense the same primary channel at a time, as assumed
in [3]. This allows efficient exploitation of all spectrum va-
cancies, thus maximizing the network throughput. We design
the optimal detectors of the SUs and we derive a myopic
channel sensing policy that maximizes the secondary network
throughput at each time instant. However, the optimal solution
of the myopic sensing policy is found to be computationally
expensive since it has an exponential complexity. Therefore,
we apply the Hungarian algorithm iteratively in order to find a
near-optimal sensing policy in a polynomial time. The iterative
Hungarian extends the Hungarian algorithm [4] by allowing
more than one vertex to be connected to a single vertex of the
other bipartite set, which is equivalent to assigning more than
one SU to sense a single primary channel when the number of
SUs is larger than the number of channels. We also propose a
heuristic algorithm that solves the channel assignment problem
at a linear complexity order. The simulation results show
that these low-complexity proposed algorithms can achieve
a near-optimal policy, yet with a significant reduction in the
computation time.

The remaining of this paper is organized as follows: Section
II defines the system model where we describe the local sens-
ing decisions. Sections III determines the accessing decisions
at the SSDC, and Section IV presents the two algorithms for
deriving the sensing policy. The simulation results are shown
in Section V and we conclude this paper in Section VI.

II. SYSTEM MODEL

We assume a group of N SUs, and a collection of M
primary channels. The primary channels’ states are modeled
as statistically identical and independent two-state (busy and
idle) Markov chains. The state busy refers to the channel
being occupied by a PU, whereas the idle state refers to a
spectrum vacancy which can be used by SUs. We denote
the true state of primary channel m ∈ {1, · · · ,M} in time
slot k by Sm(k) ∈ {0, 1}. The stationary transition prob-
ability of channel m from state i to state j is defined as
pij = Pr{Sm(k + 1) = j | Sm(k) = i},∀i, j ∈ {0, 1}. The
transition probability matrix of the Markov chain is denoted
by P = [p00 p01; p10 p11].

When a SU successfully accesses a primary channel that is
idle during a given time slot, the SU is assumed to receive
a reward proportional to the bandwidth of that channel. If a
SU accesses a primary channel in state busy, it will cause a
collision with PUs’ transmission and it gets a 0 reward in this
case. The accumulated total reward of all SUs is used as a
measure of the secondary system throughput over the primary
channels.

In order to detect the spectrum white spaces, SUs perform
spectrum sensing. We assume that the secondary CRs are
equipped with only a single antenna that switches between
sensing and actual communication. As a result, when a SU is
performing channel sensing, it stops its data communications.
It is also assumed that a single SU can only sense one

primary channel at a time. As shown in Fig. 1, SUs sense
primary channels during the designated sensing periods at the
beginning of each time slot. It is assumed that if a PU intends
to use its channel during a transmitting period, it will start to
transmit from the beginning of that time slot. On the other
hand, we assume that multiple SUs can simultaneously sense
the same primary channel.

Fig. 1. Slotted time horizon with Sensing Periods and Transmitting Periods.

At each time instant k, the SSDC predicts the channel fading
coefficients in the next slot k + 1. Based on these coefficients
and on the belief of the channels’ state in the next time slot,
the SSDC computes the sensing decisions for time k+1. Then,
each SU senses its assigned channel and it reports its sensing
outcome to the SSDC which decides which channel to access
at time k +1. The access is scheduled among secondary users
such that it guarantees equal spectrum opportunities for all
SUs.

We represent the sensing decision by the M×N matrix Ak,
where Ak(m,n) ∈ {0, 1}. The secondary user n should sense
channel m at time k only if Ak(m,n) = 1. Similarly, we
define the M ×N matrix Bk to denote the accessing decision
at time k.

We use M × N matrix Yk to denote the collection of
observation results from all SUs on their assigned primary
channels at time k with Yk(m,n) = ym,n(k), where ym,n(k)
is used to denote the report from SU n to the SSDC of the state
of m-th primary user at time k. The SSDC uses the entries
Yk(m,n), such that Ak(m,n) = 1 in order to make the
access decisions at time k. The decision making architecture
is summarized in Algorithm 1.

Algorithm 1 Decision making architecture
1. At each time k, based on previous knowledge of primary
channels and channel observations, the SSDC sends out the
sensing decisions Ak to all SUs.
2. SUs perform channel sensing according to Ak and
sensing result Yk is reported back to the SSDC.
3. Based on the channel sensing result Yk, SSDC sends out
the accessing decisions Bk to all SUs.
4. SUs access primary channels according to Bk.
5. For k → k + 1, repeat 1 through 5.

When sensing a channel m at time k, the SU n gets the
observation rm,n(k) defined as:

rm,n(k) =
{

hm,n(k)xm(k) + wn(k) if H0 : Sm(k) = 1
wn(k) if H1 : Sm(k) = 0 ,

(1)
where xm(k) is the transmitted primary signal, wn(k) is a
zero-mean Gaussian noise with variance σ2

w, and hm,n(k) is
the fading coefficient between the m-th primary transmitter



and the n-th secondary receiver at time k. The channel
coefficient hm,n(k) is assumed to be zero-mean Gaussian
distributed with variance σ2

h. We assume that the SSDC has
perfect knowledge of all channel coefficients at each time k.
Since the SU does not have knowledge about the primary
signal, we model xm(k) as a zero-mean Gaussian random
variable with variance σ2

x.
Instead of transmitting the observation rm,n(k) to the

SSDC, we assume that SUs report an estimate of the primary
channel state Sm(k), based on the observation rm,n(k). The
state estimate is denoted by ym,n(k) and it is obtained by using
a maximum a posteriori (MAP) detector for the observation in
(1). Therefore, Sm(k) ∈ {0, 1} and ym,n(k) ∈ {0, 1} can be
modeled, respectively, as the input and output of a Binary
Asymmetric Channel (BAC) having crossover probabilities
λ0

k(m,n) and λ1
k(m,n) under hypotheses H1 : {Sm(k) = 0}

and H0 : {Sm(k) = 1}, respectively, as we illustrate in Fig. 2.
We assume that transmitting ym,n(k)’s to the SSDC is error
free.

Fig. 2. SUs’ reports of observations on primary channels can be modeled
as Binary Asymmetric Channels.

The state estimation ym,n(k) ∈ {0, 1} is given in
(2) by using a MAP detector [5] such that ym,n(k) =
arg maxi∈{0,1} Pr{Sm(k) = i|rm,n(k)}. Then,

ym,n(k) =
{

0 if r2
k(m,n) ≤ η′

m,n(k)
1 if r2

k(m,n) > η′
m,n(k) , (2)

where

η′
m,n(k) =

ln
(
1 + h2

k(m,n)σ2
x

σ2
w

)
− 2 ln(ηm(k))

h2
k(m,n)σ2

x [(h2
k(m,n)σ2

x + σ2
w)σ2

w]−1 , (3)

and ηm(k) = Pr{Sm(k)=1}
Pr{Sm(k)=0} . From (2), in this case, the MAP

detector is an energy detector when xm,n(k) is assumed to be
a Gaussian random variable.

By noting that the random variables
r2

m,n(k)

σ2
w

and
r2

m,n(k)

σ2
w+h2

k(m,n)σ2
x

have a χ2-squared distribution, we may com-
pute the crossover probabilities of the BAC sensing model as:

λ1
m,n(k) = 1− 1

Γ( 1
2 )

γ

(
1
2
,
η′

m,n(k)
2σ2

w

)
, (4)

λ0
m,n(k) =

1
Γ( 1

2 )
γ

(
1
2
,

η′
m,n(k)

2(σ2
w + h2

k(m,n)σ2
x)

)
, (5)

where Γ(x) and γ(a, b) stand for the Gamma and the lower
incomplete Gamma functions, respectively [6].

III. CENTRALIZED ACCESS DECISIONS AT THE SSDC

In order to keep the above collision probability with PUs
below a certain threshold, we apply a Neyman-Pearson type
detector [5] at the SSDC to obtain the access decision rule.
For simplicity, we use the variable length vector yk(m, :) =
{ym,n(k) : ∀n ∈ Nm(k)} to denote all channel sensing reports
at time k, from the SUs on channel m. We define the variable
length vector y0:k(m, :) = {y0(m, :), · · · ,yk(m, :)} to denote
the sensing results on channel m, from time 0 to k. We use
vector Sm

0:k to denote the the states of channel m from time
0 to k. The set of all possible state vectors is denoted by
Sc = {0, 1}k+1.

At time k, for the m-th primary channel, the SSDC chooses
one of the two possible hypotheses based on y0:k(m, :):

H1 : y0:k(m, :) ∼ Pm,1 (channel idle)

H0 : y0:k(m, :) ∼ Pm,0 (channel busy),

where Pm,1, and Pm,0 denote the conditional probability
density of the vector y0:k(m, :) given Sm(k) = 0, and
Sm(k) = 1, respectively. The corresponding likelihood ratio
based on y0:k(m, :) is complicated and hard to derive in
general because the length of the sequence y0:k(m, :) increases
with time. To simplify the access decision structure, we
assume that the access decisions are based only on the current
observations yk(m, :). Then, for the m-th primary channel,
the likelihood ratio is defined as:

L(yk(m, :)) =
Pm,1(yk(m, :))
Pm,0(yk(m, :))

, (6)

where we reuse the notation Pm,1, and Pm,0 to denote
the conditional probability density of vector yk(m, :) given
Sm(k) = 0, and Sm(k) = 1, respectively.

The corresponding log-likelihood ratio is given by
LLR(yk(m, :)) =

∑
n∈Nm(k) ym,n(k)cm,n(k) + dm(k),

where we define cm,n(k) = ln
(

λ1
m,n(k)

1−λ0
m,n(k) ·

λ0
m,n(k)

1−λ1
m,n(k)

)
,

and dm(k) =
∑

n∈Nm(k) ln
(

1−λ1
m,n(k)

λ0
m,n(k)

)
. A sufficient statis-

tic is
∑

n∈Nm(k) ym,n(k)cm,n(k). In other words, the test

LLR(Yk(m, :)) ≷H1
H0

τm(k) is equivalent to the test∑
n∈Nm(k) ym,n(k)cm,n(k) ≷H1

H0
τm(k)− dm(k) = τ ′

m(k).
We use f0

m,k, and F 0
m,k to denote the conditional

probability mass function (pmf), and the conditional cu-
mulative distribution function (cdf) of random variable∑

n∈Nm(k) ym,n(k)cm,n(k) under hypothesis H0, respec-

tively. Similarly, we use f j
m,k, and F j

m,k to denote the con-
ditional pmf, and the conditional cdf of random variable∑

n∈Nm(k) ym,n(k)cm,n(k) under hypothesis Hj , where j ∈
{0, 1}.

We use ζ to denote the collision probability constraint on
each individual primary channel. So τ ′

m(k) is chosen such that:
1−F 0

m,k(τ ′
m(k)) ≤ ζ < 1−F 0

m,k(τ ′
m(k)+1). The randomized

access decision rule is then given by

δ̃NP (Yk(m, :)) =

⎧⎨
⎩

1 if
∑

ym,n(k)cm,n(k) > τ ′
m(k)

γm(k) if
∑

ym,n(k)cm,n(k) = τ ′
m(k)

0 if
∑

ym,n(k)cm,n(k) < τ ′
m(k)

,



where the summations are with respect to n ∈ Nm(k), and
δ̃NP (Yk(m, :)) is the probability of accessing channel m.
Therefore, the SSDC decides to access channel m only if
δNP (Yk(m, :)) = 1, where δNP is a binomial random variable
with a probability of success equal to δ̃NP . The randomization

variable is given by γm(k) = ζ−F 0
m,k(τ ′

m(k))

F 0
m,k(τ ′

m(k)−1)−F 0
m,k(τ ′

m(k))
. So,

the probability of detection of the white spaces is equal to:

PD,m(k,Ak) = Pr{δNP = 1 | H1} (7)

= 1− F 1
m,k(τ ′

m(k)) + γm(k) · f1
m,k(τ ′

m(k)).
(8)

We will use the probability of detection in the derivation of
the sensing decisions at the SSDC, as we show next.

IV. CENTRALIZED SENSING POLICY AT THE SSDC

A. Optimal Myopic Channel Sensing Policy

The objective of designing the sensing decision rule is to
maximize the total secondary system reward on all channels
accrued over time. To do this, we first define b0(m, k) =
Pr{Sm(k) = 0 | y0:k−1(m, :)}, and b1(m, k) = 1 − b0(m, k)
as the belief of channel m being idle and busy at time
k, given the observation history on channel m up to time
k − 1, respectively. We define the belief vectors of idle and
busy as: b0(k) = [b0(1, k), · · · , b0(M,k)]T and b1(k) =
[b1(1, k), · · · , b1(M,k)]T . At time k, after obtaining the sens-
ing observations from all SUs, the belief of the channel m
being idle in next time slot k + 1 is updated at the SSDC
using Bayes’ formula:

b0(m, k +1) =

∑
i∈{0,1} bi(m, k)pi0

∏
n∈Nm(k) fi(ym,n(k))∑

i∈{0,1} bi(m, k)
∏

n∈Nm(k) fi(ym,n(k))
,

(9)
where fi(ym,n(k)) = Pr{ym,n(k) | Sm(k) = i},∀i ∈ {0, 1}
is the conditional pmf of SUs’ observations. For the unsensed
primary channels, the belief is updated based on the Markovian
evolution of primary channels: [bi(m, k+1), 1−bi(m, k+1)] =
[bi(m, k), 1 − bi(m, k)]P, where P is the transition matrix.
The belief vectors b0(1), and b1(1) are initialized with the
stationary distribution π = [π0 π1] of the Markov model given
by π = πP.

The reward function for channel m, at time k is defined
as: rm(k,Ak) = BmI{Sm(k)=0}I{δNP =1}, where we define
Bm as the bandwidth of channel m and IE = 1 if condition
E is satisfied, and IE = 0 otherwise. The expected reward
for channel m at time k is then given by E{rm(k,Ak)} =
Bmb0(m, k)PD,m(k,Ak).

We define the vector S(k) = [S1(k), · · · , SM (k)] ∈ S as
the state of the system at time k. When the SUs do not have
perfect knowledge of the states of the primary channels, the
actual state of the system is the belief vector. Smallwood and
Sondik have provided in [7] an algorithm to obtain the optimal
decisions for this Partially Observed Markov Decision Process
(POMDP) problem. With a large number of primary channels,
the algorithm requires very high computational complexity and
the solution is often intractable [2].

As an alternative, a myopic channel sensing decision can
be defined to maximize the total secondary reward over all
primary channels at each time step. The resulting sensing

policy is different from the optimal POMDP solution because
it does not maximize the sum of the discounted rewards
accrued over time starting from each time step. That is, the
myopic solution can be considered as a suboptimal solution
to the POMDP problem. The myopic sensing decision A∗

k can
be expressed as:

A∗
k = arg max

Ak

M∑
m=1

Bmb0(m, k)PD,m(k,Ak), (10)

subject to
∑M

m=1 Ak(m,n) = 1, where PD,m(k,Ak) is
defined in (7). In this case, the sensing decision A∗

k (obtained
from (10)) is the optimal solution to the myopic sensing policy,
which we refer to as the optimal myopic solution. This solution
can be obtained by listing all MN combinations of matrix
Ak and picking the optimal solution that maximizes (10).
However, due to the complexity of this method, we propose
two different methods that compute suboptimal solutions to
the myopic policy and that have at most polynomial order
complexities.

B. Iterative Hungarian algorithm for channel sensing policy

We propose a suboptimal algorithm for solving (10) by
applying the Hungarian algorithm iteratively. For simplicity,
we drop the time indices from the algorithm description and
we let Bm = 1. We assume that the crossover probabilities of
the BACs and the false alarm probability are given. We define
the M × N matrix Δ(m,n) such that Δ(m,n)(m′, n′) = 1 if
(m′, n′) = (m,n), and Δ(m,n)(m′, n′) = 0 otherwise. Then,
we use Algorithm 2 to find the channel sensing assignment
A, which provides a suboptimal solution to (10).

We note that the complexity of the Hungarian algorithm [4]
is (max{M,N})3 for an M × N bipartite graph. Therefore,
the complexity of the proposed iterative Hungarian algorithm
is in the order of �N

M �(max{M,N})3 since the Hungarian
algorithm is computed iteratively �N

M � times. In brief, the
proposed algorithm can solve the sensing channel assignment
with an order 4 polynomial complexity.

In particular, if N ≤ M , Algorithm 2 is equivalent to the
Hungarian algorithm which provides the optimal solution to
(10) in this case.

Algorithm 2 Iterative Hungarian Algorithm

A = 0M×N and N̄ = {1, · · · , N}
while N̄ 	= ∅ do

ΔP = 0M×N

for m ∈ {1, · · · ,M} and n ∈ N̄ do
ΔP(m,n) =

[
PD,m

(
A + Δ(m,n)

)− PD,m (A)
]
b0(m)

end for
Run the Hungarian algorithm for the M × N bipartite
graph whose edge weights are given in ΔP to obtain the
maximum sum matching.
Remove the assigned vertices from the set N̄.
Append the new assignments to matrix A.

end while



C. Heuristic algorithm for channel sensing policy

We propose next a heuristic algorithm that permits to reduce
the complexity to a linear order in function of the number of
secondary users N . The algorithm picks randomly a secondary
user n and assigns it to the channel m for which it has the
highest detection probability. Also, we allow at most �N

M �
to sense each channel so that the SUs sense evenly all the
channels and keep accurate information about the belief of
every channel state. A description of the proposed heuristic
sensing method is given in Algorithm 3, in which we drop the
time indices for simplicity.

Algorithm 3 Heuristic Sensing Assignment

A = 0M×N and N̄ = {1, · · · , N}.
while N̄ 	= ∅ do

Pick randomly n ∈ N̄.
m∗ = arg maxm∈{1,··· ,M} Bmb0(m)PD,m(Δ(m,n))

s.t.
∑

n∈{1,··· ,N} A(m,n) < �N
M �

A← A + Δ(m∗,n)

N̄← N̄\n
end while

V. SIMULATION RESULTS AND DISCUSSIONS

We show in the simulations the average utilization of the
spectrum holes as a function of the average SNR at the
secondary detectors. We define the average utilization of the
spectrum holes as:

U =
∑M

m=1

∑N
n=1

∑∞
k=1 Bk(m,n)(1− Sm(k))∑M

m=1

∑∞
k=1(1− Sm(k))

, (11)

where Bk(m,n) is the accessing decision such that∑N
n=1 Bk(m,n) ≤ 1, meaning that at most one SU can

access a channel at each time instant if it is found to be
idle. The average SNR at the n-th secondary detector when
sensing channel m at time k is equal to: SNR = σ2

x

σ2
w

,
and we assume that the fading coefficients hm,n(k) to be
independent identically distributed (i.i.d.) standard Gaussian
random variables. The primary channels are assumed to have
independent Markovian evolutions and having the transition
matrix:

P =
(

0.9 0.1
0.8 0.2

)
. (12)

We compare the average utilization of the spectrum holes
that is obtained by using the three different methods. In order
to compare with the optimal myopic solution, the values of
M and N are not chosen too large because, in that case, the
optimal solution becomes intractable. In Fig. 3, we observe
that the performance of the iterative Hungarian algorithm is
close to the optimal myopic solution at low and high SNR’s.
However, the performance of the heuristic algorithm is close to
the other two algorithms only in the low SNR region. We note
that the average utilization converges to ζ = 0.1 at low SNR,
which conforms with the Receiver Operating Characteristics
(ROC) of the Neyman-Pearson detector which becomes linear
at low SNR [5], thus making the detection probability equal
to the false alarm.
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Fig. 3. Average Utilization of the spectrum holes

Note that, when M = N = 5, and referring to
Section IV, the computational complexity is reduced by

MN

� N
M �(max{M,N})3 = 25 and MN

N = 625 times when applying
the iterative Hungarian and the heuristic algorithms, respec-
tively, as compared to the optimal myopic solution.

VI. CONCLUSIONS

In this paper, we presented a centralized spectrum sens-
ing and accessing protocol for SUs in a CR network. We
considered a more realistic CR network, compared to those
that have been assumed in previous DSA designs, by taking
into account the spatial and temporal variations of channel
fading coefficients on the different primary channels. We
derived the optimal access decision strategy and the optimal
sensing decisions for a myopic policy assuming a centralized
decision-making architecture. As an alternative to the high
complexity of the optimal myopic channel sensing policy, we
proposed two algorithms for obtaining near-optimal policies:
The first based on the iterative Hungarian algorithm and
it has fourth-order complexity while the second algorithm
is based on a heuristic method and has linear complexity.
The simulation results showed that the two proposed low-
complexity algorithms achieve a performance very close to
the optimal solution, but with a much smaller computational
effort.
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